
[Kumar, 2(6): June, 2013]   ISSN: 2277-9655 
                                                                                                                 

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[1645-1649] 

 

IJESRT   
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH 

TECHNOLOGY 
High Speed Low Area Pattern Matching Algorithm for Memory Architecture 

Kiran Kumar.M*1, Murali Kante2, Narayana Reddy Vanteru3 

*1,2,3 Narayana Engineering College, India 
kiranyadav418@gmail.com 

Abstract 
  Pattern matching is one of the most important components for the content inspection based applications of 
network security, and it requires well designed algorithms and architectures to keep up with the increasing network 
speed. Due to the advantages of easy re-configurability and scalability, the memory-based string matching 
architecture is widely adopted by network intrusion detection systems (NIDS). In order to accommodate the 
increasing number of attack patterns and meet the throughput requirement of networks, a successful NIDS system 
must have a memory-efficient pattern-matching algorithm and hardware design. In this paper, we propose a 
memory-efficient pattern-matching algorithm which can significantly reduce the memory requirement. For Snort 
rule sets, the new algorithm achieves 21% of memory reduction compared with the traditional Aho–Corasick 
algorithm. In addition, we can gain 24% of memory reduction by integrating our approach to the bit-split algorithm 
which is the state of the art memory-based approach. 
 
Keywords: Aho–Corasick (AC) algorithm, finite automata, pattern matching.             
           
 

Introduction  
  The main purpose of a signature-based network 
intrusion detection system is to prevent malicious 
network attacks by identifying known attack patterns. 
Due to the increasing complexity of network traffic and 
the growing number of attacks, an intrusion detection 
system must be efficient, flexible and scalable. 
  The primary function of an intrusion detection 
system is to perform matching of attack string patterns. 
Because string matching is the most computative task in 
network intrusion detection (NIDS) systems, many 
hardware approaches are pro-posed to accelerate string 
matching. The hardware approaches may be classified 
into two main categories, the logic [1]-[6] and the 
memory architectures [7]-[11]. In terms of 
reconfigurability and scalability, the memory 
architecture has attracted a lot of attention because it 
allows on-the-fly pattern update on memory without 
resynthesis and relayout. The (attack) string patterns are 
compiled to a finite-state machine (FSM) whose output 
is asserted when any substring of input strings matches 
the string patterns. Then, the corresponding state 
transition table of the FSM is stored in 

memory

 
Fig.1 Basic memory architecture 

Fig. 1 Represents a simple memory architecture 
to implement the FSM. In the architecture, the memory 
address register consists of the current state and input 
character; the decoder converts the memory address to the 
corresponding memory location, which stores the next 
state and the match vector information. A “0” in the 
match vector indicates that no “suspicious” pattern is 
matched; otherwise the value in the matched vector 
indicates which pattern is matched.  

For example in Fig. 1, suppose the current state 
is 7 and the input character is . The decoder will point to 
the memory location which stores the next state 8 and the 
match vector 2. Here, the match vector 2 indicates the 
pattern “pcdg” is matched. 

In this paper, we propose a state-traversal 
mechanism on a merge FSM while achieving the same 
purposes of pattern matching. Since the number of states 



[Kumar, 2(6): June, 2013]   ISSN: 2277-9655 
                                                                                                                 

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[1645-1649] 

 

in merg  FSM can be drastically smaller than the original 
FSM, it results in a much smaller memory size. Our 
algorithm achieves 21% of memory reduction compared 
with the traditional AC algorithm. 

 
Review of AC Algorithm 
        The Aho–Corasick (AC) algorithm [12] is the most 
popular algorithm which allows for matching multiple 
string patterns. In this section, we review the AC 
algorithm. Among all memory architectures, the AC 
algorithm has been widely adopted for string matching 
in [2], [10], [11] because the algorithm can effectively 
reduce the number of state transitions and therefore the 
memory size. 

 
Fig. 2 DFA for matching "bcdf" and "pcdg" 

 
Fig. 3 State diagram of an AC machine 

 
Fig. 4 AC state table 

In figures 2 and 3 shows the state transition diagram 
derived from the AC algorithm where the solid lines 
represent the valid transitions while the dotted lines 
represent a new type of state transition called the failure 
transitions.  

The failure transition is explained as follows. 
Given a cur-rent state and an input character, the AC 
machine first checks whether there is a valid transition for 
the input character; otherwise, the machine jumps to the 
next state where the failure transition points. Then, the 
machine recursively considers the same input character 
until the character causes a valid transition. Consider an 
example when an AC machine is in state 1 and the input 
character is p. According to the AC state table in Fig. 4, 
there is no valid transition from state 1 given the input 
character p. When there is no valid transition, the AC 
machine takes a failure transition back to state 0. Then in 
the next cycle, the AC machine reconsiders the same 
input character in state 0 and finds a valid transition to 
state 5. This example shows that an AC machine may take 
more than one cycle to process an input character. 

In Fig. 3, the double-circled nodes indicate the 
final states of patterns. In Fig. 3, state 4, the final state of 
the first string pattern “bcdf”, stores the match vector 
{P2P1}={01} and state 8, the final state of the second 
string pattern “pcdg”, stores the match vector of 
{P2P1}={10} . Except the final states, the other states 
store the match vector {P2P1}={00} to simply express 
those states are not final states. 

 
Fig. 5 Merging similar states 

 
Fig. 6 Architecture of the state traversal machine 

 
 



[Kumar, 2(6): June, 2013]   ISSN: 2277-9655 
                                                                                                                 

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[1645-1649] 

 

Basic Idea 
          Due to the common substrings of string patterns, 
the compiled AC machine may have states with similar 
transitions. Despite the similarity, those similar states are 
not equivalent states and cannot be merged directly. In 
this section, we first show that functional errors can be 
created if those similar states are merged directly. Then, 
we propose a mechanism that can rectify those functional 
errors after merging those similar states. 

The merg_FSM is a different machine from the 
original state machine but with a smaller number of states 
and transitions. A direct implementation of merg_FSM 
has a smaller memory than the original state machine in 
the memory architecture. Our objective is to modify the 
AC algorithm so that we can store only the state transition 
table of merg_FSM in memory while the overall system 
still functions correctly as the original AC state machine 
does. The overall architecture of our state traversal 
machine is shown in Fig. 6. The new state traversal 
mechanism guides the state machine to traverse on the 
merg_FSM and provides correct results as the original AC 
state machine. In Section IV, we first discuss the state 
traversal mechanism. Then in Section V, we discuss how 
the state traversal machine is created in our algorithm. 

 
State Traversal Mechanism on a MERG_FSM 
           In the previous example, state 26 represents two 
different states (state 2 and state 6) and state 37 
represents two different states (state 3 and state 7).We 
have shown that directly merging similar states leads to 
an erroneous state machine. To have a correct result, 
when state 26 is reached, we need a mechanism 
to understand in the original AC state machine whether it 
is state 2 or state 6. Similarly, when state 37 is reached, 
we need to know in the original AC state machine 
whether it is state 3 or state 7. In this example, we can 
differentiate state 2 or state 6 if we can memorize the 
precedent state of state 26. If the precedent state of state 
26 is state 1, we know that in the original AC state 
machine, it is state 2. On the other hand, if the precedent 
state of state 26 is state 5, the original is state 6. This 
example shows that if we can memorize the precedent 
state entering the merged states, we can differentiate all 
merged states. In the following section, we discuss how 
the precedent path vector can be retained during the state 
traversal in the merg_FSM.  

First of all, we would like to mention that in a 
traditional AC state machine, a final state stores the 
corresponding match vector which is one-hot encoded. 
For example in Fig. 3, state 4, the final state of the first 
string pattern “bcdf”, stores the match vector and state 8, 
the final state of the second string pattern “pcdg”, stores 
the match vector of . Except for the final states, the other 
states store simply to express those states are not final 
states. One-hot encoding for a match vector is  

 
necessary because a final state may represent more than 
one matched string pattern [4]. 
 

 
Fig. 7 New Data Structure, Path Vector, and if Final  

 
Fig. 8 New state diagram of Merg_FSM 

Therefore, the width of the match vector is 
equal to the number of string patterns. As shown in Fig. 
4, the majority of memories in the column “match 
vector” store the zero vectors {00} which are not 
efficient. 

In our design, we reuse those memory spaces 
storing zero vectors {00} to store useful path information 
called pathVec. First, each bit of the pathVec 
corresponds to a string pattern. Then, if there exists a 
path from the initial state to a final state, which matches 
a string pattern, the corresponding bit of the pathVec of 
the states on the path will be set to 1. Otherwise, they are 
set to 0. Consider the string pattern “bcdf” whose 
final state is state 4 in Fig. 7. The path from state 0, via 
states 1, 2, 3 to the final state 4 matches the first string 
pattern “bcdf”. Therefore, the first bit of the pathVec of 
the states on the path, {state 0, state 1, state 2, state 3, 
and state 4}, is set to 1. Similarly, the path from state 0, 
via states 5, 6, 7 to the final state 8 matches the second 
string pattern “pcdg”. Therefore, the second bit of the 



[Kumar, 2(6): June, 2013]   ISSN: 2277-9655 
                                                                                                                 

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[1645-1649] 

 

pathVec of the states on the path, {state 0, state 5, state 
6, state 7, and state 8}, is set to 1. In addition, we add an 
additional bit, called ifFinal, to indicate whether the state 
is a final state. For example, because states 4 and 8 are 
final states, the ifFinal bits of states 4 and 8 are set to 1, 
the others are set to 0. As shown in Fig. 7, each state 
stores the pathVec and ifFinal as the form, “pathVec_ 
ifFinal”. Compared with the original AC state machine in 
Fig. 3, we only add an additional bit to each state. We 
have mentioned that in this example, states 2 and 6, 
states 3 and 7 are similar because they have similar 
transitions. However, they are not equivalent. Note that 
two states are equivalent if and only if their next states 
are equivalent. In Fig. 7, states 3 and 7 are similar but not 
equivalent because for the same input , state 3 takes a 
transition to state 4 while state 7 takes a failure transition 
to state 0. Similarly, state 2 and state 6 are not 
equivalent states because their next states, state 3 and 
state 7, are not equivalent states. 

 
State Traversal Pattern Matching Algorithm 

 
 
Hardware Architecture 
          This hardware module which can be configured for 
matching 16 or 32 patterns with a state machine 
containing 1024 valid transitions at most. In Fig. 8, the 

register, called address_register, is used to store the 
current state and the input character. The valid_memory is 
used to store the in-formation of valid_state, pathVec, and 
if Final corresponding to each valid transition while the 
failure_memory is used to store the failure_state 
corresponding to each failure transition. In this prototype, 
we use a hardwired circuit, calledA2P , to translate the 
content of the address_register to a contiguous scope, 
called pos, to utilize the valid_memory. The circuit A2P 
can be implemented using hardwired circuit or CAM. In 
addition, the signal n_valid is high if there is no valid 
transition corresponding to the address_register. 
Furthermore, the register, called preReg , is used to trace 
the precedent pathVec in each state. The preReg is 
initiated to be 1 for all bits and is updated by performing a 
bitwise AND operation on its current value and the 
pathVec from the valid_memory. The ns_ctrl unit is used 
to determine the next state by the value of preReg and 
n_valid. If the preReg is 0 for all bits or the n_valid is 1, 
the ns_sel will output low to let the failure_state update 
the current_state register. On the other hand, if the preReg 
is not zero and the n_valid is not 1, the ns_sel will output 
high to let the valid_state update the current_state register. 

 
Fig. 8 Hardware Module for New Algorithm 

 
Results and Discussion 

Using the traditional AC algorithm, the number 
of transitions and states are 6793 and 6804, respectively. 
The memory size is 49 267 bytes. Integrating our 
algorithm to the AC algorithm, the number of transitions 
and states are reduced to 4432 and 3846, respectively. The 
memory size is reduced to 30 699 bytes, 38% of memory 
reduction from the AC algorithm. For total 2217 string 



[Kumar, 2(6): June, 2013]   ISSN: 2277-9655 
                                                                                                                 

http: // www.ijesrt.com         (C) International Journal of Engineering Sciences & Research Technology 
[1645-1649] 

 

patterns of Snort rule sets, our algorithm achieves a 21% 
memory reduction compared with the AC algorithm. 

 
Fig. 9 Indicates the current state output 

 
Conclusion 

We have presented a memory-efficient pattern 
matching algorithm which can significantly reduce the 
number of states and transitions by merging pseudo-
equivalent states while maintaining correctness of string 
matching. In addition, the new algorithm  is 
complementary to other memory reduction approaches 
and provides further reductions in memory needs. The 
experiments demonstrate a significant reduction in 
memory footprint for data sets commonly used to 
evaluate IDS systems. 
 
References 

[1] V. Aho and M. J. Corasick, “Efficient string 
matching: An AID to bibliographic search,” 
Commun. ACM, vol. 18, no. 6, pp. 333–340,1975. 

[2] M. Aldwairi, T. Conte, and P. Franzon, 
“Configurable string matchinghardware for 
speeding up intrusion detection,” Proc. ACM 
SIGARCH Comput. Arch. News, vol. 33, no. 1, pp. 
99–107, 2005. 

[3] B. Brodie, R. Cytron, and D. Taylor, “A scalable 
architecture for high-throughput regular-
expression pattern matching,” in Proc. 33rd Int. 
Symp. Comput. Arch. (ISCA), 2006, pp. 191–122. 

[4] Z. K. Baker and V. K. Prasanna, “High-throughput 
linked-pattern matching for intrusion detection 
systems,” in Proc. Symp. Arch. for Netw. 
Commun. Syst. (ANCS), Oct. 2005, pp. 193–202. 

[5] Y. H. Cho and W. H. Mangione-Smith, “A pattern 
matching co-processor for network security,” in 
Proc. 42nd IEEE/ACM Des. Autom. Conf., 
Anaheim, CA, Jun. 13–17, 2005, pp. 234–239. 

[6] Y. H. Cho and W. H. Mangione-Smith, “Fast 
reconfiguring deep packet filter  in Proc. 13th Ann. 
IEEE Symp. Field Program. Custom Comput. 
Mach. (FCCM), 2005, pp. 215–224. 

[7] C. R. Clark and D. E. Schimmel, “Scalable pattern 
matching on high speed networks,” in Proc. 12th 
Ann. IEEE Symp. Field Program. Custom Comput. 
Mach. (FCCM), 2004, pp. 249–257. 

[8] S. Dharmapurikar and J. Lockwood, “Fast and 
scalable pattern matching for content filtering,” in 
Proc. Symp. Arch. for Netw. Commun. Syst. 
(ANCS), Oct. 2005, pp. 183–192. 

[9] B. L. Hutchings, R. Franklin, and D. Carver, 
“Assisting network intrusion detection with 
reconfigurable hardware,” in Proc. 10 th Annu. 
IEEE Symp. Field-Program. Custom Comput. 
Mach. (FCCM), 2002,pp. 111–120. 

[10] H. J. Jung, Z. K. Baker, and V. K. Prasanna, 
“Performance of FPGA implementation of bit-split 
architecture for intrusion detection systems,” 
presented at the 20th Int. Parallel Distrib. Process. 
Symp. (IPDPS), Rhodes Island, Greece, 2006. 

[11] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, 
and J. Turner, “Algorithms to accelerate multiple 
regular expressions matching for deep packet 
inspection,” in Proc. ACM SIGCOMM Comput. 
Commun. Rev. 2006, pp. 339–350. 

[12] C. H. Lin, C. T. Huang, C. P. Jiang, and S. C. 
Chang, “Optimization of pattern matching circuits 
for regular expression on FPGA,” IEEE Trans. 
Very Large Scale Integr. (VLSI) Syst., vol. 15, no. 
12, pp.1303–1310, Dec. 2007 


